Prediction of longitudinal brain atrophy in multiple sclerosis by gray matter magnetic resonance imaging T2 hypointensity.

نویسندگان

  • Robert A Bermel
  • Srinivas R Puli
  • Richard A Rudick
  • Bianca Weinstock-Guttman
  • Elizabeth Fisher
  • Frederick E Munschauer
  • Rohit Bakshi
چکیده

BACKGROUND Gray matter magnetic resonance imaging T2 hypointensity, a marker of iron deposition, is associated with clinical impairment and brain atrophy in cross-sectional studies of multiple sclerosis. Treatment with intramuscular interferon beta-1a limits brain atrophy in the second year of treatment. OBJECTIVE To test whether T2 hypointensity predicts brain atrophy and whether interferon affects this relationship. DESIGN Post hoc analysis. SETTING A multicenter treatment trial conducted at tertiary care comprehensive multiple sclerosis centers. Patients Patients with multiple sclerosis who took part in a 2-year clinical trial in which they received intramuscular interferon beta-1a (30 mug/wk) or placebo. MAIN OUTCOME MEASURES Deep gray matter T2 hypointensity, brain parenchymal fraction (BPF), and total T2, gadolinium-enhancing, and T1 lesion volumes. RESULTS T2 hypointensity in various gray matter areas correlated with baseline BPF (r = 0.19-0.39; P = .001-.03). In placebo-treated patients (n = 68), baseline T2 hypointensity predicted the change in BPF in the first year and throughout 2 years (r = 0.26-0.42; P<.001-.03). T2 hypointensity was chosen in regression modeling as the best predictor of BPF change at the 1-year (R(2) = 0.23; P = .002) and 2-year (R(2) = 0.33; P<.001) time points after accounting for all magnetic resonance imaging variables. In the interferon group (n = 65), no relationship existed between baseline T2 hypointensity and BPF change. CONCLUSIONS Gray matter T2 hypointensity predicts the progression of brain atrophy in placebo- but not interferon beta-1a-treated patients. This predictive effect is seen as early as the first year. We hypothesize that interferon beta may exert its effect on brain atrophy in part by reducing a cascade of events that involve iron deposition as a mediator of neurotoxicity or as a disease epiphenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study.

CONTEXT While gray matter T2 hypointensity in multiple sclerosis (MS) has been associated with physical disability and clinical course, previous studies have relied on visual magnetic resonance imaging (MRI) assessments. OBJECTIVE To quantitatively determine if T2 hypointensity is associated with conventional MRI and clinical findings in MS. DESIGN Case-control study. SETTING University-a...

متن کامل

Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study.

BACKGROUND Diffusion tensor magnetic resonance imaging (DT MRI) has the potential to provide in vivo information about tissue microstructure. In multiple sclerosis (MS), DT MRI has disclosed the presence of occult structural damage in the normal-appearing brain tissues. OBJECTIVE To investigate whether DT MRI is sensitive to longitudinal changes of brain damage that may occur beyond the resol...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

The Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI)

Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathologic...

متن کامل

ASSESSMENT OF MULTIPLE AREAS ON MAGNETIC RESONANCE MIDSAGITTAL BRAIN IMAGES IN MULTIPLE SCLEROSIS PATIENTS* RENGIN KOSIF, SULE AYDIN TURKOGLU, ELIF SULTAN BOLAC and EMINE DAGISTAN

Multiple sclerosis (MS) is a chronic immune mediated, inl ammatory, demyelinating disease of the central nervous system (1). New magnetic resonance imaging (MRI) techniques have shown microstructural damage either at white matter or gray matter, proven to be of histopathologic nature (2). Inl ammation in MS has been proven, especially in deep white matter, gray matter and interstitial area, so ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of neurology

دوره 62 9  شماره 

صفحات  -

تاریخ انتشار 2005